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Introduction Score-based Generative Models (SGMs) for PET Image Reconstruction

* Score-based Generative Models (SGMs): flexibly * After training an SGM sy, to perform PET image reconstruction we use the PET-DDS
enhance Positron Emission Tomography (PET) image (Decomposed Diffusion Sampling) algorlthm as proposed by Singh et a/ [1]:
reconstruction accuracy, by leveraging prior
information learnt only from high-quality PET images
* Challenge: can an SGM adequately generalise from
scarce data to an unseen patient’s brain anatomy?
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Methodology: Synthesizing Subject-Specific PET Images from Multi-Subject Images to train an SGM

1. Multi-subject MR registration to target MR : 2. Apply registration to multi-subject PET . Deep-learned registration: use Voxelmorph [2] to register multi-subject

MR datasets to target MR

 Synthesis of subject-unique high-quality pseudo-PET images: apply
registration fields to corresponding multi-subject PET images

* Train SGM: sample 2D transverse slices from pseudo-PET images; train
SGM on slices by minimizing the Denoising Score Matching objective

 Reconstruct images: from test dataset’s noisy PET sinograms using PET-
DDS, for SGMs trained on pseudo- or real PET images

« Two separate data sources: simulated [3F]FDG and real ['®F]DPA714
PET images formed using OSEM (resolution 2mm x 2mm x 2mm)

Simulated data: 39 patient-realistic ['®F]FDG Real data: 12 real [18F]DPA714 datasets were obtained
distributions were simulated from real T1 MR. from the Inflammatory Reaction in Schizophrenia
Voxelmorph training used 36 training datasets and study [3], which used the Siemens Biograph mMR. The
the test dataset. 2 validation datasets were Voxelmorph registration function was trained on all
reserved for to perform early stopping on the datasets, while SGMs were trained on all datasets
SGM'’s validation loss. Full count data was except the test dataset. 2D reconstruction was

5. Reconstruct from 4. Train SGM on target- : 3. Average a subset S of co-registered modelled as 6x108 counts. 3D reconstruction was =~ performed from direct plane sinograms with

target PET with SGM speciﬁc pseudo-PET images to get a pseudo-PET image performed from 2.5% of full count. 4.7%x10° counts (compared to 7.5x108 counts in 3D).
Results: Simulated ['®F]FDG (3D) SGM
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The use of subject-specific priors improves reconstruction

accuracy both qualitatively and quantitatively

 Reconstructions from SGMs trained with pseudo-PET are
imbued with anatomical features, despite not using
explicit MR information during reconstruction

* Using multiple summed PET images as SGM training data
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i . Registering PET datasets using MR information can imbue
the registered image with additional anatomical features
/W * Training an SGM with diverse & subject-specific prior
information can improve the accuracy of reconstructions
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Hyperparameters controlling the reqularization strength were varied
for each method, with contrast ratio plotted against background noise

for each selection.
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